In this project I investigate the exponential distribution in R and compare it with the Central Limit Theorem. The exponential distribution can be simulated in R with rexp(n, lambda) where lambda is the rate parameter. The mean of exponential distribution is 1/lambda and the standard deviation is also 1/lambda. Set lambda = 0.2 for all of the simulations. I investigate the distribution of averages of 40 exponentials. I needed to do a thousand simulations. I Illustrate via simulation and associated explanatory text the properties of the distribution of the mean of 40 exponentials.I then show the sample mean and compare it to the theoretical mean of the distribution.I then show how variable the sample is (via variance) and compare it to the theoretical variance of the distribution, and finally showing that the distribution is approximately normal.

The goal is to predict the manner in which they did the exercise which is represented in the classe variable in the training set. This variable is omitted in the test set. This report is describing how the model was built, how cross validation was used, what the expected out-of-sample error is, and what choices have been made. The prediction model derived in this report is finally used to predict 20 test cases.

Lets get in touch and talk about your next project.

>